113 research outputs found

    Review: Towards the agroecological management of ruminants, pigs and poultry through the development of sustainable breeding programmes. II. Breeding strategies

    Get PDF
    Agroecology uses ecological processes and local resources rather than chemical inputs to develop productive and resilient livestock and crop production systems. In this context, breeding innovations are necessary to obtain animals that are both productive and adapted to a broad range of local contexts and diversity of systems. Breeding strategies to promote agroecological systems are similar for different animal species. However, current practices differ regarding the breeding of ruminants, pigs and poultry. Ruminant breeding is still an open system where farmers continue to choose their own breeds and strategies. Conversely, pig and poultry breeding is more or less the exclusive domain of international breeding companies which supply farmers with hybrid animals. Innovations in breeding strategies must therefore be adapted to the different species. In developed countries, reorienting current breeding programmes seems to be more effective than developing programmes dedicated to agroecological systems that will struggle to be really effective because of the small size of the populations currently concerned by such systems. Particular attention needs to be paid to determining the respective usefulness of cross-breeding v. straight breeding strategies of well-adapted local breeds. While cross-breeding may offer some immediate benefits in terms of improving certain traits that enable the animals to adapt well to local environmental conditions, it may be difficult to sustain these benefits in the longer term and could also induce an important loss of genetic diversity if the initial pure-bred populations are no longer produced. As well as supporting the value of within-breed diversity, we must preserve between-breed diversity in order to maintain numerous options for adaptation to a variety of production environments and contexts. This may involve specific public policies to maintain and characterize local breeds (in terms of both phenotypes and genotypes), which could be used more effectively if they benefited from the scientific and technical resources currently available for more common breeds. Last but not least, public policies need to enable improved information concerning the genetic resources and breeding tools available for the agroecological management of livestock production systems, and facilitate its assimilation by farmers and farm technicians

    Meta-analysis of the effect of the halothane gene on 6 variables of pig meat quality and on carcass leanness

    Get PDF
    Technological meat quality is a significant economic factor in pork production, and numerous publications have shown that it is strongly influenced both by genetic status and by rearing and slaughter conditions. The quality of meat is often described by meat pH at different times postmortem, as well as by color and drip loss, whereas carcass quality is often characterized by lean percentage. A meta-analysis of findings relating to 3,530 pigs reported in 23 publications was carried out to assess the effects of the halothane gene, sex, breed, and slaughter weight of animals on 7 selected variables: pH at 45 min postmortem, ultimate pH, reflectance (L*-value), redness (a*-value), yellowness (b*-value), drip loss, and lean percentage. Two statistical methods were used in the meta-analysis: the method of effect size and the better known random effects model. The method of effect size was associated with Markov chain Monte Carlo techniques for implementing Bayesian hierarchical models to avoid the problems of limited data and publication bias. The results of our meta-analysis showed that the halothane genotype had a significant effect on all analyzed pork quality variables. Between-study variance was evaluated with the Cochran (1954) Q-test of heterogeneity. Meta-regression was used to explain this variance, with covariates such as breed, sex, slaughter weight, and fasting duration being integrated into different regression models. The halothane gene effect was associated with the breed effect only for the following variables: L*-value, b*-value, and drip loss. Slaughter weight contributed significantly only to the explanation of differences in ultimate pH between homozygous genotypes. In response to inconsistencies reported in the literature regarding the difference between the genotypes NN and Nn, results of the meta-analysis showed that the difference between these 2 genotypes was significant for all the analyzed variables except the a*-value

    Number and mode of inheritance of QTL influencing backfat thickness on SSC2p in Sino-European pig pedigrees

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the pig, multiple QTL associated with growth and fatness traits have been mapped to chromosome 2 (SSC2) and among these, at least one shows paternal expression due to the IGF2-intron3-G3072A substitution. Previously published results on the position and imprinting status of this QTL disagree between analyses from French and Dutch F2 crossbred pig populations obtained with the same breeds (Meishan crossed with Large White or Landrace).</p> <p>Methods</p> <p>To study the role of paternal and maternal alleles at the IGF2 locus and to test the hypothesis of a second QTL affecting backfat thickness on the short arm of SSC2 (SSC2p), a QTL mapping analysis was carried out on a combined pedigree including both the French and Dutch F2 populations, on the progeny of F1 males that were heterozygous (A/G) and homozygous (G/G) at the IGF2 locus. Simulations were performed to clarify the relations between the two QTL and to understand to what extent they can explain the discrepancies previously reported.</p> <p>Results</p> <p>The QTL analyses showed the segregation of at least two QTL on chromosome 2 in both pedigrees, i.e. the IGF2 locus and a second QTL segregating at least in the G/G F1 males and located between positions 30 and 51 cM. Statistical analyses highlighted that the maternally inherited allele at the IGF2 locus had a significant effect but simulation studies showed that this is probably a spurious effect due to the segregation of the second QTL.</p> <p>Conclusions</p> <p>Our results show that two QTL on SSC2p affect backfat thickness. Differences in the pedigree structures and in the number of heterozygous females at the IGF2 locus result in different imprinting statuses in the two pedigrees studied. The spurious effect observed when a maternally allele is present at the IGF2 locus, is in fact due to the presence of a second closely located QTL. This work confirms that pig chromosome 2 is a major region associated with fattening traits.</p
    • …
    corecore